Abstract

Hydrogen fuel cell vehicles have gained more attention as future automobiles due to their environmental benefits and extended driving ranges. Concurrently, the global hydrogen sensor market is also experiencing substantial growth. These sensors are integrated into vehicles to detect hydrogen leakage and concentration, thereby ensuring the safety of hydrogen fuel cell vehicles. In particular, hydrogen pressure sensors, commonly installed on the manifold and regulator of vehicles, can measure hydrogen pressure and diagnose safety concerns caused by hydrogen leakage in advance. In this paper, we identify the vulnerable points of hydrogen pressure sensors when exposed to vehicle driving environments, investigate failure mechanisms, and provide process optimization techniques. Specifically, our reliability modeling verifies that the components of a printed circuit board (PCB) exposed to humid environments undergo corrosion due to ion migration, leading to the generation of extrinsic series or parallel resistances, which in turn cause fluctuations of output voltage. Through structural and elemental analysis, we pinpoint process-related factors that make components vulnerable to humidity, thereby suggesting recommendations for enhancing the manufacturing process. Based on this analysis in the development stage, we can proactively address and improve reliability and further safety-related issues for future automobiles, thus preventing real field issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.