Abstract
Hard milling is being increasingly used as an alternative to EDM due to its high productivity. The present paper presents the results of theoretical-experimental research on the face milling of hard steel 55NiCrMoV7. A comprehensive analysis of cutting temperatures and forces during single-tooth milling and a morphological examination of the resulting chips are conducted for roughing and semi-finishing operations. The temperature is analyzed in the chip formation area, and the detached chips and the cutting force are analyzed through their tangential, radial, and penetration components, depending on the contact angle of the cutter tooth with the workpiece. The analysis of chip morphology is carried out based on the dimensional and angular parameters of chip segmentation and their degree of segmentation. Based on the central composite design and the response surface method, it is shown that it is possible to mathematically model the dependence of the macroscopic dimensions of the detached chips on the cutting parameters. The determined process functions, the maximum chip curling diameter, and the maximum chip height allow for establishing the influence of the cutting parameters' values on the chips' macroscopic dimensions and, thus, guiding the cutting process in the desired direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.