Abstract

The characterization of tissue-specific promoters is critical for studying the functions of genes in a given tissue/organ. To study tissue-specific promoters in soybean, we screened tissue-specific expressed genes using published soybean RNA-Seq-based transcriptome data coupled with RT-PCR analysis. We cloned the promoters of three genes, GmADR1, GmBTP1, and GmGER1, and constructed their corresponding β-Glucuronidase (GUS) promoter-GUS reporter vectors. We generated transgenic Arabidopsis plants and examined the expression patterns of these promoters by GUS staining and RT-PCR analysis. We also transformed the promoter-GUS reporter vectors into soybean to obtain hairy roots, and examined promoter expression by GUS staining. We found a root-specific expression pattern of GmADR1 and GmBTP1 in both Arabidopsis and soybean, and the promoter of GmGER1 showed a leaf-specific pattern in transgenic Arabidopsis plants. To test the potential utility of these promoters in soybean improvement by transgenic means, we used the GmADR1 promoter to drive expression of a salt resistance gene in soybean, GmCaM4, by generating transgenic soybean plants. We found that the transgenic plants had significantly enhanced salt tolerance compared to non-transformed wild-type, suggesting that introducing endogenous promoters by transgenic means can drive the expression of functional genes in specific tissues and organs in soybean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call