Abstract

We study the two-component Ginzburg–Landau (GL) theory, in the presence of a self-consistent vortex line, to obtain the penetration depth (λ) and the effective healing length (ξ), in the asymptotic limit r → ∞. All these parameters versus T/Tc are analyzed for the materials MgB 2, V 3 Si and LiFeAs in the interval 0.88 ≤ T/Tc ≤ 1.0, where the GL theory is assumed to be valid. We find that κ ≡ λ/ξ, which is another parameter not related to the GL parameter, is T-independent for V 3 Si and LiFeAs , while is T-dependent for the compound MgB 2. This result suggests that even though all these three materials display two-gap superconductivity overall, near Tc superconductivity in V 3 Si and LiFeAs seems to be different from the one in MgB 2. The use of this parameter, κ, as a new way to "study" the superconducting materials, under the presence of a single vortex, is valid for 0.88Tc≲ T ≤ Tc, namely, in the GL formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.