Abstract

During an ionospheric heating experiment in Tromsø during February 1999, artificial 630.0 nm airglow enhancements have been observed by the auroral large imaging system (ALIS). The airglow enhancements took place in the F region of the ionosphere near the heating wave reflection point. Two possible mechanisms are proposed for the explanation of this phenomenon. The first is the excitation of the O(1D) state by the energetic electrons from the tail of the artificially heated thermal electron gas, and the second is the excitation of this state by the plasma instability accelerated electrons. The detailed spatial and temporal characteristics of the red line airglow are obtained from the ALIS measurements. An analysis of these characteristics based on the models of thermal response of the ionosphere and the atmospheric optical emissions allows us to draw conclusions about the mechanism of the interaction between the heating radio wave and the ionospheric plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.