Abstract

The previously introduced EXCLUSIVE INDEX model allows to predict the population of 6 residual nuclei including the primary compound nucleus through two stages of the preequilibrium phase. The present version is limited to maximum two-nucleon emission. The preequilibrium ejectiles may reduce the brought-in rotational energy by a model of maximum angular momentum decoupling. Subsequent evaporation of protons, neutrons andα-particles is treated in the frame of the Weisskopf-Ewing ands-wave approximation considering pairing effects only in compound nucleus state densities. The sensitivity of essential preequilibrium parameters on the shape of calculated excitation functions is tested. The model predictions well compare to excitation functions fromp, d,3He and4He induced reactions including the large set from the reaction93Nb(4He,xn yp) up to 170 MeV bombarding energy. The general importance of two-nucleon preequilibrium emission is accentuated in several examples. The deduced preequilibrium parameters corroborate the results from the INDEX model analysis of nucleon spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call