Abstract

Reef-building corals are representatives of one of the earliest diverging metazoan lineages and are experiencing increases in bleaching events (breakdown of the coral- Symbiodinium symbiosis) and disease outbreaks. The present study investigates the roles of two pattern recognition proteins, the mannose binding lectin Millectin and a complement factor C3-like protein (C3-Am), in the coral Acropora millepora. The results indicate that the innate immune functions of these molecules are conserved and arose early in evolution. C3-Am is expressed in response to injury, and may function as an opsonin. In contrast, Millectin expression is up-regulated in response to lipopolysaccharide and peptidoglycan. These observations, coupled with localization of Millectin in nematocysts in epidermal tissue, and reported binding of pathogens, are consistent with a key role for the lectin in innate immunity. Furthermore, Millectin was consistently detected binding to the symbiont Symbiodinium in vivo, indicating that the Millectin function of recognition and binding of non-self-entities may have been co-opted from an ancient innate immune system into a role in symbiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.