Abstract
We have investigated the processes N($\pi$, $\pi$)N and N($\pi$, $\eta$)N close to eta threshold using a simple, nonrelativistic Lee model which has the advantage of being analytically solvable. It is then possible to study the Riemann sheets of the S-matrix and the behavior of its resonance poles especially close to threshold. A theoretical simulation of the experimental cusp effect at eta threshold leads to a characteristic distribution of poles on the Riemann sheets. We find a pole located in the $4^{th}$ Riemann sheet that up to now has not been discussed. It belongs to the cusp peak at eta threshold. In addition we obtain the surprising result using the Lee model that the resonance $S_{11}(1535)$ does not play a large role. The main features of the experimental data can be reproduced without explicitly introducing this resonance. Furthermore, we have also studied the reactions N($\gamma$, $\pi$)N and N($\gamma$, $\eta$)N and find reasonable agreement between the data and both models with and without the $S_{11}(1535)$ resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.