Abstract

The impact of vibrations on health in occupational environments has been extensively studied. Although the effects of vehicle vibrations on driving comfort has been investigated, the literature on the impact of vehicle vibrations on health is scarce. Accordingly, this study aimed to investigate the influence of e-scooter vibrations on driver health by considering both whole-body vibrations (WBVs) and hand–arm vibrations (HAVs). From the perspective of health, vibration zones were defined based on the UNE-2631 and UNE-5349 standards, as well as the European Vibration Directive. Real measurements obtained from an e-scooter acceleration database were used. The results of the study on WBVs show that, on average, 87.54% and 95.47% of non-desirable vibrations are caused by driving an e-scooter on pavers and asphalt, respectively. This shows that ‘potentially non-healthy’ and ‘non-healthy’ vibrations are 25.69% and 61.85%, respectively, when driving on pavers and 85.52% and 12.96%, respectively, when driving on asphalt. Therefore, the WBV levels reached by driving an e-scooter on any pavement could potentially harm health. However, the influence of HAV on the incidence of Raynaud’s syndrome is low. The study results on WBV suggest that future e-scooter designs must be based on a more damped road–driver interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call