Abstract

This article is concerned with the problem of the number and dynamical properties of equilibria for a class of connected recurrent networks with two switching subnetworks. In this network model, parameters serve as switches that allow two subnetworks to be turned ON or OFF among different dynamic states. The two subnetworks are described by a nonlinear coupled equation with a complicated relation among network parameters. Thus, the number and dynamical properties of equilibria have been very hard to investigate. By using Sturm's theorem, together with the geometrical properties of the network equation, we give a complete analysis of equilibria, including the existence, number, and dynamical properties. Necessary and sufficient conditions for the existence and exact number of equilibria are established. Moreover, the dynamical property of each equilibrium point is discussed without prior assumption of their locations. Finally, simulation examples are given to illustrate the theoretical results in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call