Abstract
This case study investigates the role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, which are integral membrane proteins crucial for regulating neuronal excitability. HCN channels are composed of four subunits (HCN1-4), with HCN1, HCN2, and HCN4 previously linked to epilepsy. However, the role of the HCN3 in epileptogenesis remains underexplored. We recruited a cohort of 298 epilepsy patients to screen for genetic variants in the HCN3 (NM_020897.3) using Sanger sequencing. We identified rare variants and conducted functional assays to evaluate their pathogenicity. We identified three rare heterozygous variants in HCN3: c.1370G > A (R457H), c.1982G > A (R661Q), and c.1982G > A(P630L). Invitro functional analyses demonstrated that these variants affected the expression level of HCN3 protein without altering its membrane localization. Whole-cell voltage-clamp experiments showed that two variants (R457H and R661Q) significantly reduced current density in cells, while P630L has no effect on ion channel current. Our findings suggest that the identified HCN3 genetic variants disrupt HCN ion channel function, highlighting HCN3 as a novel candidate gene involved in epileptic disorders. This expands the genetic landscape of epilepsy and provides new insights into its molecular underpinnings. Epilepsy is a brain disease that can be caused by mutations in specific genes. We found three rare variants in HCN3 gene in 298 patients with epilepsy, and two of the three mutations could be pathogenic and cause epilepsy and another one is single-nucleotide polymorphism, which could have no effect and no contribution to the development of epilepsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.