Abstract

Differing from those traditional vehicle exhaust heat recovery systems which just provided thermal energy directly for cabin warming, integrated Exhaust Energy Recovery (EER) which is researched and developed mainly in recent years aims to convert exhaust thermal energy to mechanical or electric energy for increasing the total thermal efficiency and the total power of powertrain. In the study presented in this paper, an analytic model was built for examining the environmental and economic benefits of integrated EER systems. Then the improvement on the total powertrain efficiency and net reduction of CO2 emissions were investigated, in terms of the average vehicle used in the UK. Results show that, for light duty vehicles fitted with thermal cycle EER system, the cost increase could be paid back in 10.1years and CO2 emission could be paid back in just 1.9years, compared to Hybrid Electric Vehicle’s (HEV’s) 11.9years and 1.4years for cost and CO2 emission, respectively. When the annual fuel price increase is considered, the cost pay-back is reduced to 8.1years for EER vehicles and 8.9years for HEVs. Higher mileage vehicles will have more obvious advantage for fitting EER system. When doubled annual mileage is considered, EER system can reduce the cost and CO2 emission pay-back times to 2.7years and 0.6years, compared to HEV’s 8.5 and 2.7years, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.