Abstract

AbstractThe investigation of entropy generation in peristaltic flow in an asymmetric channel under mixed convective conditions is a contribution to the body of literature. The used transport model includes appropriate boundary conditions along with continuity, momentum, energy, and concentration equations. Under the presumptions of a long wavelength and a low Reynolds number, the analysis is carried out. The analysis takes into account important elements including Joule heating, magnetohydrodynamics (MHD), and heat and mass transmission. An approach using BVP4C is used to analyze the governing system. The research adds to the body of knowledge in the subject by revealing important details about the complex interactions between these variables and how they affect peristaltic flow's creation of entropy. The originality of this work resides in its thorough examination of numerous crucial elements, including MHD, Joule heating, and mass and heat transport. The originality of this research is further enhanced by the analysis of the impacts of various parameters on velocity, temperature, concentration, pressure gradient, and streamlines. This study provides a novel viewpoint and a deeper knowledge of the entropy generation phenomenon in peristaltic flow, opening the door for potential applications in numerous disciplines including fluid dynamics, biomedical engineering, and transport processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call