Abstract

Combustion and NO x emissions from a dimethyl ether (DME) fuelled compression ignition engine were investigated. The test engine used consisted of an unmodified two-cylinder direct injection four-stroke air cooled type. The injection timing and injector opening pressure were left unaltered from their diesel fuelling settings. Analysis of the fuel line pressure shows that due to the compressibility of DME the rate of pressure rise was lower, resulting in injection occurring later when compared to diesel injection. The maximum combustion chamber pressure was found to be higher in the case of diesel fuelling. In terms of energy release it was found that with DME this occurs later than in the case of diesel fuelling with the larger proportion occurring just after top dead centre. A comparison of NO x emissions revealed that, at all loads tested, these were higher in the case of DME fuelling and decreased steadily with increasing speed. At the higher speeds however, the levels of NO x monitored were noted to be less than those of their diesel counterpart. Some of the factors influencing the promotion of NO x emissions with DME fuelling are discussed and analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.