Abstract
ObjectiveRacial disparities exist in cancer patients both in incidence and death rates. In endometrial cancer, Black patients are reported to have higher incidence of aggressive endometrial cancer subtypes and higher death rates than White women. To date, diagnostic and prognostic biomarkers associated with race-specific methylation driven genes have yet to be identified.The objective of this study was to explore DNA methylation patterns in endometrial tumor samples from White and Black women. MethodsDifferentially methylated CpGs (DMCs) and differentially methylated regions (DMRs) were identified in White tumor samples compared to Black tumor samples using Endometrial Carcinoma (EC) methylation and clinical data from The Cancer Genome Atlas (TCGA). Survival analysis was performed using survival R package and results were visualized using Kaplan-Meier plots. To access the correlation between changes in methylation and gene expression, we downloaded raw RNA-sequencing by Expectation-Maximization (RSEM) counts data from The Cancer Genome Atlas (TCGA) using TCGABiolinks package (v2.18.0). ResultsOur analysis revealed 704 differentially methylated CpGs in tumors from Black and White women. These differentially methylated genes showed strong negative correlation with gene expression and statistically significant enrichment in regulatory regions such as DNase I hypersensitivity sites (DHSs) and transcription factor binding sites (TFBSs). Increased variability in methylation occurred in genes such as the insulin signaling pathway in Black tumor samples. ConclusionBy using two independent statistical method based on means (DMR, DMCs) and variances (DVCs) on the endometrial carcinoma TCGA data, we showed that endometrial tumors from Black women are hypomethylated and more hypervariable than tumors from White women. In-depth investigation of these methylation driven markers can aid in successful management of endometrial cancer disparities and improved overall survival in Black and White populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.