Abstract

In this work, the influence of individual sections of the water supply network on the dynamics of nodal heads in emergency operating modes is investigated. During accidents in the network sections, the dynamics of the head changes, the supply of water to the network decreases, areas with insufficient heads are formed. The subject of the analyzed stage of research is the influence of individual sections of the network on the location and size of areas with insufficient head. To determine the influence of individual sections of the network on head dynamics, methods of mathematical modeling of flow distribution in the water supply network, methods of hydraulic calculations of water supply networks were used. The results of studies of formation and change of areas with insufficient head taking into account emergency situations for networks with different structure and configuration are presented. The tasks to be performed by the flow management system at the network design stage are defined. Based on the results of the studies, the water supply conditions were evaluated during the formation of areas of insufficient pressure. Proposed algorithm consists of visualization of network structure, simulation of emergency situations, hydraulic calculations of network in normal and emergency operation modes, determination of actual head in network nodes, clarification of location of control nodes, calculation of required head of pumps in emergency operation mode. The proposed method allows you to determine the priority selection of network sections during its reconstruction and restoration. Modeling and analysis of pressure zones in the network allows you to change the number and location of pressure control units depending on the need. The proposed recommendations on flow management can be implemented in the work of utility dispatch services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.