Abstract

AbstractAn analysis is presented of electromigration-induced migration and oscillatory dynamics of morphologically stable void surfaces based on self-consistent numerical simulations of morphological evolution of voids in metallic thin films. As the morphological stability limit is approached, the migration speed of a stable void deviates substantially from being inversely proportional to the void size, a well-known result that is rigorously valid in an infinite conductor with isotropic material properties. A non-linear shape function that includes both current crowding and diffusional anisotropy effects is used to rescale properly the void migration speed resulting in a universally valid relationship for the migration speed as a function of void size. Furthermore, in grains characterized by high symmetry of surface diffusional anisotropy, our analysis predicts the onset of stable time-periodic states for the void surface morphology that correspond to waves propagating on surfaces of voids that migrate along the metallic film at constant speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call