Abstract

A nonlinear adaptive lumped parameter magnetic circuit model is developed to predict the electromagnetic performance of a flux-switching permanent-magnet machine. It enables the air-gap field distribution, the back-electromotive force (back-EMF) waveform, the winding inductances, and the electromagnetic torque to be calculated. Results from the model are compared with finite-element predictions and validated experimentally. The influence of end effects is also investigated, and optimal design parameters, such as the rotor pole width, the stator tooth width, and the ratio of the inner to outer diameter of the stator, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call