Abstract

Electrochemical grinding process is a compound machining of electrochemical machining and mechanical grinding process. Machined components through the micro-ECG process have huge applications in the electronics, automobile and medical industries. This paper presents the modeling and analysis of turbulent flow in inter-electrode gap of electrochemical grinding to show the performance of erosion in the material removal rate of aluminum–alumina composite. Evaluation of shear stress generated on worked surface is obtained from graph of simulated results, and is used to find the shear forces acting on the boundary of workpiece. The shear stress increases with increase in the rotational speed of grinding wheel for a fixed inter-electrode gap, and the same was found for the shear force. The material removal rate by the erosion process was very small, and it increases with increase in the rotational speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call