Abstract

Polymeric Electrolyte Membrane Fuel Cell (PEMFC) modeling considering thermal and electrical behavior in a coupled manner is a key aspect when evaluating new designs, materials, physical phenomena or control strategies. Depending on the behavior to be emulated, it is important to choose the modeling technique that best suits the needs required. In this sense, this paper describes the most commonly used PEMFC modeling techniques in the context of analytical-mechanistic approach, semi-empirical approach based on theoretical formulation and empirical correlations, as well as empirical approach based on experimentation with a real system. In addition, an in-depth analysis of PEMFC models at the cell and stack level that emulate the thermal and electrical behavior of these systems in a coupled manner is carried out. A chronological classification of the most relevant models has been made based on the modeling technique used, purpose of the model, state and dimension of the model, and the real system, other developed models or experimental results that have been used to validate the proposed new model. Additionally, new modeling challenges have been detected to study several effects on the behavior of PEMFCs, and guidelines to improve their energy efficiency through the development of new models are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.