Abstract

We have designed a prototype microfluidic device to mix suspended particles with isotonic saline by use of electrically induced swirling flow in the microchannel. However, the principles underlying microfluidic rotation induced by AC electrodes are not well understood, and the characteristics of the rotation velocity are unpredictable. Furthermore, these properties have not been studied using a highly conductive liquid like isotonic saline, which is an important fluid in the medical and biological fields. The lack of such studies causes uncertainty in the design required for high-performance microfluidic devices. We have examined the electrical rotational properties of the microfluid at an isotonic concentration of saline using computer simulation, and here we show that buoyant flow, which has previously been largely ignored, has a significant effect in channels of 100-μm depth or deeper, and that AC electroosmotic flow is not induced at isotonic saline concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.