Abstract

The axicon-based-Bessel-Gauss resonator (ABGR) has been proposed for the production of Bessel-Gauss beams. To analyze eigenfields of the ABGR with a plane or spherical output coupler, we present and demonstrate the transfer-matrix method. Since the method is slow to converge to eigenmodes of the ABGR by use of the Fox and Li iterative algorithm, in this paper the Huygens-Fresnel diffraction integral equations associated with ray matrices are converted into finite-sum matrix equations, and mode-fields and corresponding losses are described as eigenvectors and eigenvalues of a transfer matrix according to the self-reproducing principle of the laser field. By solving the transfer matrix for eigenvectors and eigenvalues, we obtain field distributions and losses of the dominant eigenmodes. Moreover, eigenfields across arbitrary interfaces between the axicon and the output coupler, and the propagation of output beams, are simulated by using the fast-Fourier transform (FFT). The calculation results reveal that because of the ABGR's poor transverse mode discrimination the ABGR should be improved to produce good-quality Bessel-Gauss beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.