Abstract

The large difference in the working performance of a hollow cathode plasma contactor between the ground and actual on-orbit environments will cause difficulties in selecting a ground-test schemes to fully simulate the contactor real on-orbit characteristics. In this study, the effect of the simulated anode size and structure, the simulated anode surface state, the flow rate of background working gas, and the background plasma density on the emission characteristics and plume structure of the contactor are studied. Three self-made simulated anodes of different sizes and structures are applied in the ground experiments. The change of anode surface state (particularly the ability of absorbing electrons) is realized by dividing the self-made simulated anodes into four double-separated regions and alternatively electrically isolating them. An additional gas channel and an auxiliary contactor are used to create background working gas and a low-Earth-orbit plasma atmosphere, respectively. The voltage–current curves as well as the plasma parameter distributions at the contactor exit and in the far-field regions are determined under different regimes and working conditions. The relationship between the contactor’s emission characteristics and plume structure is clarified. The experimental results could provide useful information for instructing the contactor design and developing a real on-orbit experiment plan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.