Abstract

The present investigation showed that the additions of Ca to the alloy AZ91 were mainly dissolved into the Mg17Al12 phase and increased its melting point and thermal stability, which would have great effects on the high-temperature properties of AZ91 alloy. The empirical electron theory (EET) of solid and molecules was used to calculate the valence electron structures (VES) of Mg17Al12 intermetallic compound with and without Ca addition. The results showed that Ca dissolving in Mg17Al12 phase increased the strength of bonds that control the thermal stability of Mg17Al12 phase. Additions of Ca also made the distribution of the valence electrons on the dominant bond network more uniform in the whole unit cell of Mg17Al12. The theoretical conclusions well account for the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.