Abstract

This paper describes the analysis of the eddy current loss of a double-sided cored slotless-type permanent magnet linear synchronous generator considering tapped holes in mover magnets using the space harmonic method. To calculate the eddy current, an analytical solution was derived by applying the Maxwell’s equation, magnetic vector potential, and Faraday’s law in a 2-D Cartesian coordinate system. Based on the armature reaction field distribution produced by the armature winding current, we obtained an analytical solution for the eddy current density distribution. Then, an analytical solution for eddy current loss induced in a permanent magnet (PM) was derived using the equivalent electrical resistance calculated from the PM’s volume and eddy current density distribution solution. Finally, the resulting current was determined based on the analysis of eddy current loss. The analytical results produced by using this application of the space harmonic method were validated extensively through comparisons with finite-element method results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.