Abstract
A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of discrete F. graminearum-induced proteolytic fragments of β-amylase. Based on these results, analysis of grain proteome changes prior to extensive proteolysis enabled identification of barley proteins responding early to infection by the fungus. In total, the intensity of 51 protein spots was significantly changed in F. graminearum-infected spikelets and all but one were identified. These included pathogenesis-related proteins, proteins involved in energy metabolism, secondary metabolism and protein synthesis. A single fungal protein of unknown function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them candidates for generation of the observed β-amylase fragments. These fragments have potential to be developed as proteome-level markers for fungal infection that are also informative about grain protein quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.