Abstract

With the growing number of anterior cruciate ligament (ACL) ruptures and the increased interest for regenerative medicine procedures, many studies are now concentrated on developing bioactive and biodegradable synthetic ligaments. For this application, the choice of raw materials with appropriate physicochemical characteristics and long-term degradation features is essential. Polycaprolactone (PCL) has the advantage of slow degradation that depends on its molecular weight. This study evaluates two PCL materials: a technical grade (PC60: 60 kDa) versus a medical grade (PC12: 80 kDa), both before and after functionalization with poly(sodium styrene sulfonate) (pNaSS). After determining the grafting process had little to no effect on the PCL physicochemical properties, sheep ACL fibroblast responses were investigated. The PC12 films induced a significantly lower expression of the tumor necrosis factor alpha inflammatory gene compared to the PC60 films. Both film types induced an overproduction of fibroblast growth factor-2 and transforming growth factor beta compared to the controls on day 5 and demonstrated collagen gene expression profiles similar to the controls on day 7. Upon protein adsorption, pNaSS grafting caused a rapid cell adhesion in the first 30 min and an increased adhesion strength (1.5-fold higher). Moreover, after 7 days, an increase in cell density and actin network development were noted on the grafted films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call