Abstract

Resilience of power grids is a problem of tremendous practical and theoretical relevance. In this work, we model a power grid as a complex network of coupled oscillators. We investigate the robustness of synchronization, associated with the normal operating regime of the network, to partial malfunctioning of the nodes. Differently from previous efforts on power grid resilience, node malfunctioning is not modeled by removing a node from the network. Instead, we insert a continuous perturbation into the node dynamical equation, which reduces the degree of synchronization of the network. This framework enables an analytical treatment of the problem, ultimately leading to a detailed quantification of the criticality of each network node. The approach is applied to the UCTE European transmission network 1st synchronous area and to the IEEE 118-bus test case. The identification of nodes which are more critical to synchronization yields non-trivial hints at a complex interplay between topology and dynamics in shaping dynamical robustness of power grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.