Abstract

In this paper, a nonlinear mathematical model for analyzing dynamical response to the large deformation of piles with initial displacements is firstly established with the arc-coordinate, and it is a set of nonlinear integral-differential equations, in which, the Winkeler model is used to simulate the resistance of the soil to the pile. Secondly, a set of new auxiliary functions are introduced. The differential-integral equations are transformed into a set of nonlinear differential equations, and the differential quadrature method (DQM) and the finite difference method (FDM) are applied to discretize the set of nonlinear equations in the spatial and time domains, respectively. Then, the Newton-Raphson method is used to solve the set of discretization algebraic equations at each time step. Finally, numerical examples are presented, and the dynamical responses to the deformation of piles, including configuration, bending moment and shear force, are graphically illuminated. In calculation, two types of initial displacements and dynamical loads are applied, and the effects of parameters on the dynamical responses of piles are analyzed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call