Abstract

In order to ensure flight safety, the stall test is one of the most important steps in the airworthiness certification phase of civil aircraft. The twisted-swept fan is one of the most important components of the high bypass ratio engine. The unsteady flow field of the fan rotor stall condition is obtained by numerical simulation. At the same time, the time series flow field data of the stall condition flow field is acquired. The modal analysis of the unsteady flow field at stall condition was performed using the dynamic mode decomposition and proper orthogonal decomposition methods. Through modal identification of a large number of unsteady flow field data, the eigenvalues and corresponding modal information about the unsteady flow field change process are obtained. Finally, the evolution process of the unsteady flow field of the fan rotor under stall condition is visually demonstrated, and the coherent structures of different scales in the complex flow field under stall condition are revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call