Abstract

We investigate the dynamic response of industrial rubbers (styrene-butadiene random copolymers, SBR) in torsion and compare against common small amplitude oscillatory shear measurements by using a torsion rectangular fixture, a modified torsion cylindrical fixture, and a conventional parallel plate fixture, respectively, in two different rheometers (ARES 2kFRTN1 from TA Instruments, USA and MCR 702 from Anton Paar-Physica, Austria). The effects of specimen geometry (length-to-width aspect ratio) on storage modulus and level of clamping are investigated. For cylindrical specimens undergoing torsional deformation, we find that geometry and clamping barely affect the shear moduli, and the measurements essentially coincide with those using parallel plates. In contrast, a clear dependence of the storage modulus on the aspect ratio is detected for specimens having rectangular cross section. The empirical correction used routinely in this test is based on geometrical factors and can account for clamping effects, but works only for aspect ratios above a threshold value of 1.4. By employing a finite element analysis, we perform a parametric study of the effects of the aspect ratio in the cross-sectional stress distribution and the linear viscoelastic torsional response. We propose a new, improved empirical equation for obtaining accurate moduli values in torsion at different aspect ratios, whose general validity is demonstrated in both rheometers. These results should provide a guideline for measurements with different elastomers, for which comparison with dynamic oscillatory tests may not be possible due to wall slip issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.