Abstract

A new method relying on the Stroh formulism and the theory of the surface impedance tensor was developed to investigate the dynamic instability of interfacial slip waves. The concept of the surface impedance tensor was extended to the case where the wave speed is of a complex value, and the boundary conditions at the frictionally contacting interface were expressed by the surface impedance tensor. Then the boundary value problem was transformed to searching for zeroes of a complex polynomial in the unit circle. As an example, the steady frictional sliding of an elastic half-space in contact with a rigid flat surface was considered in details. A quartic complex characteristic equation was derived and its solution behavior in the unit circle was discussed. An explicit expression for the instability condition of the interfacial slip waves was presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.