Abstract
Multistage planetary gear transmission system has been widely utilized in engineering practice due to the salient characteristics, such as high bearing load and large speed ratio. This paper addresses a two-stage planetary gearbox and establishes a system coupling torsional dynamical model which considers the time-varying mesh stiffness, friction forces, and interstage coupling factors. Meanwhile, the friction and lubrication states are classified to comprehensively analyze the calculation of friction coefficients under different conditions. Considering the time-varying influence of friction on the tooth surface under the condition of fluid lubrication, the vibration response under parametric excitation is solved by a numerical method. A multistage planetary transmission test bench is built in the back-to-back form so as to test the vibration of the two-stage planetary gearbox. It shows that the simulation results of the dynamical model are consistent with the test data. Consideration of the calculation of friction on the tooth surface and the friction coefficients is helpful for the establishment of the more accurate dynamical model and lays the foundation for the structural design, fault diagnosis, and dynamic optimization of the multistage planetary gear transmission system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.