Abstract

In this paper, a novel nonconventional angle displacement (i.e., 15°) between two sets of three-phase windings is proposed for dual three-phase permanent-magnet (PM) machines. First, all feasible angle displacements between the two three-phase winding sets for various slot/pole number combinations of dual three-phase machines are discussed in general. Then, an in-depth investigation is carried out on a 24-slot/10-pole dual three-phase PM machine as an example covering various electromagnetic performances. The investigation shows that under healthy and three-phase open-circuit conditions, the proposed 15° configuration has a comparable electromagnetic performance to the 30° configuration, and a better performance than the 0° counterpart. Furthermore, under three-phase short-circuit (SC) condition, the proposed 15° configuration has the lowest SC current, smallest braking torque, and the best PM demagnetization withstand capability. Finally, three prototype 24-slot/10-pole surface-mounted PM machines are built and tested to verify the theoretical analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.