Abstract

This study investigates the numerical solutions of MHD boundary layer and heat transfer of the Williamson fluid flow on the exponentially vertical shrinking sheet, having variable thickness and thermal conductivity under effects of the velocity and thermal slip parameters. It is also assumed that shrinking/stretching velocity, as well as the wall temperature, has the exponential function form. In this study, the continuity, momentum and energy equations with buoyancy parameter and Hartmann number are incorporated especially in the Williamson fluid flow case. Similarity transformation variables have been employed to formulate the ordinary differential equations (ODEs) from partial differential equations (PDEs). The resultant ODEs are solved by shooting method with Runge Kutta of fourth order method in Maple software. The effects of the different applied non-dimensional physical parameters on the boundary layer and heat transfer flow problems are presented in graphs. The effects of Williamson parameter, Prandtl number, and slip parameters on velocity and temperature profiles have been thoroughly demonstrated and discussed. The numerical results show that the buoyancy force and the slip parameters contribute to the occurrence of the dual solutions on the boundary layer and heat transfer flow problems. Furthermore, the stability analysis suggests that the first solution is stable and physically possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.