Abstract

Confined dual frequency hydrogen plasma discharge has been investigated with microwave interferometer method and radial profiles are taken by Abel inversion technique. Dual radio-frequency sources, operating at 27.12MHz and 1.94MHz, are coupled to each other through the plasma. 27.12MHz RF power is used to enhance plasma density and 1.94MHz power is used to enhance ion acceleration energy to the electrode. Radial density profiles has been taken for comparing the effects of low frequency source that the secondary RF source causes reduction in plasma density due to the sheath expansion. Instead radial density profile is assumed as flat by most of the models, there is about 2.5eV of potential drop occurs from centre to boundary at 40W of primary source power. It has been observed that increasing sheath width (increasing the secondary source power to primary source power) reduces the bulk plasma volume and makes potential profile flattening in y direction. While the high frequency power is dissipated by electrons in the bulk plasma; low frequency power is mostly dissipated by ions in the sheath region. Using both high and low frequency power, we may control plasma density and ion acceleration energy to the electrode simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.