Abstract

Background: Brewer´s spent grain (BSG) is a biomass by-product generated in large volumes during industrial beer production. BSG has become a growing environmental problem, as most breweries discard it inappropriately, negatively impacting the environment. Alternatives for the exploitation of this by-product have consisted of elaborating food supplements for farm animals, obtaining biofuels, developing adsorbents, and obtaining substances for the food industry. However, the high moisture content in BSG (approximately 70%), poses a significant challenge in exploring various reuse alternatives. Therefore, the implementation of a pre-drying process becomes essential. Objective: This study aimed to analyze the BSG drying kinetics at different temperatures and the effect of the drying temperature on the physical properties and the content of bioactive compounds. Methods: BSG samples were dried at different temperatures (50, 60, 70, 80, 90, and 105°C) and analyzed for their moisture ratio, water activity, total polyphenol content (TPC), and DPPH (1,1-diphenyl-2-picrylhydrazil) radical scavenging activity. Also, four kinetics models were fitted to the drying data. Results: It was determined that the effective diffusivity was between 5.23x10-10 (m2/s) and 2.49x10-09 (m2/s), and the value of the activation energy was 28.05 kJ/mol. In addition, it was found that the content of phenolic compounds (1.27±0.120 mg gallic acid equivalents /g) and the DPPH radical scavenging activity (0.21±0.015 mg gallic acid equivalents /g) were not significantly affected by the variation in the drying temperatures studied. Conclusions: From an operational point of view, the most suitable temperature for the drying process of BSG was 105°C since it would allow to reach shorter drying times, and the TPC was not affected markedly by the range of temperature studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call