Abstract
A hybrid model for streamflow generation is presented to explore the possibilities of using the multilayer feedforward artificial neural networks (ANNs) as generators of future scenarios, with emphasis on the ability to reproduce the statistics of flows related to drought and storage. The artificial neural network model has two components: deterministic and random. The second part of the model incorporates the uncertainty associated with the hydrological processes. The model is applied to the monthly inflows of Mula irrigation project in Maharashtra, India. A comparison of drought and storage among other statistics was made between the performance of the ANN-based model results and the results of the Thomas–Fiering models. The results show that ANN is a promising alternative modelling approach for flow simulation purposes, with interesting potential in the context of water resources systems management and optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.