Abstract
Characterization of short-channel amorphous indium gallium zinc oxide (InGaZnO) (a-IGZO) thin-film transistors (TFTs) has been a crucial issue to realize higher resolution display and heterogeneous integration with complementary metal–oxide–semiconductor (CMOS) technology. In this work, the drain-induced barrier lowering (DIBL) of the a-IGZO TFT was investigated with the variations in oxygen content in the IGZO layer. In order to accurately investigate the effect of the drain voltage on the channel potential, it is necessary to analyze the energy band diagram based on the dopant profile of the channel region. A new method for extracting the channel dopant profile through a simple <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${C}$ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> measurement of the a-TFT sample was proposed. We performed TCAD device simulation based on the extracted density of states and dopant profile of IGZO layer and confirm good agreement with the measured <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics of a-IGZO TFTs with various oxygen contents. The effective channel length was found to be short with decreasing the oxygen content in the IGZO channel layer. The DIBL effect becomes more severe as the oxygen content decreases. Our methodology, which was successfully verified in this work, can be utilized for the analysis of short-channel effects including DIBL for the scaled a-IGZO TFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.