Abstract

High energy nucleus-nucleus collisions are a great interest as a means of creating a new state of matter. The transition of nuclear matter to quark matter is expected to result in a strongly interacting region that lives for a long time and expands to a large volume. In order to understand the properties of the collision region, it is important to gather information experimentally on the lifetime and thermodynamic attributes such as temperature, volume, density, and entropy of the collision region. Deuteron production by phase space coalescence is particularly interesting because it can be used as a probe in studying the space-time structure of the heavy ion collisions. In the hot and dense participant region, a proton and a neutron coalesce when their relative momentum is small. The deuteron density in momentum space is proportional to the proton density squared in momentum space at equal momenta per nucleon, assuming proton and neutron density to be identical. The motivation here is to study the properties of the coalesced deuterons formed in the participant region of Au-Au collisions at 11.6 GeV/c. The d/p ratio as a function of centrality is studied in hopes of gaining information about any change in the sizemore » of the participant zone which could lead to the effort of searching for the Quark-Gluon-Plasma at the AGS. The results shown here is very preliminary and the work is in progress.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call