Abstract

The wide usage of microplastics and heavy metals has led to the accumulation of these pollutants in our environment. Among heavy metals and microplastics, Cadmium (Cd), polyvinyl chloride (PVC), and polyethylene (PE) are the most severe and ubiquitous pollutants. With large surface areas, microplastics have the ability to absorb metal ions, potentially performing "carrier effect", by which microparticles enhance the transfer of other pollutants from soil to plants. Phytoextraction has been shown to be the most effective strategy to remediate heavy metal contamination. In this study, we selected Galinsoga quadriradiata (G. quadriradiata) as the test species to investigate the effectiveness of phytoextraction in soil contaminated with Cd, PVC and PE. According to our results, G. quadriradiata present effective phytoextraction to Cd and microplastics. However, the carrier effect between Cd and PVC or PE only exists in the value of maximal quantum efficiency of photosystem II (Fv/Fm) but has no effect on the uptake of Cd by G. quadriradiata. For future studies, we propose to investigate the carrier effect between heavy metals and microplastics in plants, test the pathway of microplastics by which they are up-taken by plants from soil, and increase the efficiency of phytoextraction by exposing plants (such as G. quadriradiata) that have been proved to absorb heavy metal to microplastics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call