Abstract

ABSTRACT The Doppler spectrum of a microwave scatterometer signal is determined by the relative motion between the scatterometer and the ocean surface. It is also determined by the modulation from the ocean surface backscattering coefficient. The relative motion includes contributions mainly from the motion of the platform, the phase velocity of the resonant Bragg waves, the orbital motions of ocean waves, and the ocean surface current. Estimating the Doppler centroid from the complex Doppler spectrum of the received signal is an important issue for the application of a spaceborne Doppler scatterometer in ocean surface current retrieval. In this study, we use an echoed signal simulation model based on a two-dimensional rough dynamic ocean surface to estimate the Doppler spectrum of a spaceborne Doppler scatterometer. We analyze the Doppler spectrum with different observation geometry and ocean state, and the effects of modulation on the Doppler spectrum with the pulse-pair method. Our results show that the high platform velocity and the modulation of the backscattering coefficient from the ocean surface are the main influencing factors that affect the shape of the Doppler spectrum of the received signal, which affects the accuracy of estimation of the Doppler centroid. For a Ka-band pencil-beam rotating Doppler scatterometer using the pulse-pair method, the modulation can lead to a measurement error of 1.2 m·s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.