Abstract
The cystic fibrosis transmembrane conductance regulator gene (CFTR) exhibits a complex pattern of expression that shows temporal and spatial regulation, although the control mechanisms are not fully known. We have mapped DNase-I-hypersensitive sites (DHSs) flanking the CFTR gene with the aim of identifying potential regulatory elements. We previously characterized DHSs at -79.5 and -20.9 kb with respect to the CFTR translational start site and a regulatory element in the first intron of the gene at 185+10 kb. We have now mapped five DHSs lying 3' to the CFTR gene at 4574+5.4, +6.8, +7.0, +7.4 and +15.6 kb that show some degree of tissue specificity. The DHSs are seen in chromatin extracted from human primary epithelial cells and cell lines; the presence of the +15.6 kb site is tissue-specific in transgenic mice carrying a human CFTR yeast artificial chromosome. Further analysis of the 4574+15.6 kb DHS implicates the involvement of CCAAT-enhancer-binding protein (C/EBP), cAMP-response-element-binding protein (CREB)/activating transcription factor (ATF) and activator protein 1 (AP-1) family transcription factors at this regulatory element.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.