Abstract

FtsK is a bacterial protein that translocates DNA in order to transport chromosomes within the cell. During translocation, DNA's double-helical structure might cause a relative rotation between FtsK and the DNA. We used a single-molecule technique to quantify this rotation by observing the supercoils induced into the DNA during translocation of an FtsK complex. We find that FtsK induces approximately 0.07 supercoils per DNA helical pitch traveled. This rate indicates that FtsK does not track along DNA's groove, but it is consistent with our previous estimate of FtsK's step size. We show that this rate of supercoil induction is markedly near to the ideal value that would minimize in vivo disturbance to the chromosomal supercoil density, suggesting an origin for the unusual rotational behavior of FtsK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call