Abstract

The characteristic patterns of dynamic banding (replication banding) were analysed. Extremely high resolution (850 to 1,250 bands per genome) G- and R-band patterns were obtained after 5-bromo-2'-deoxyuridine (BrdUrd) incorporation either during the early or the late S-phase. We synchronized human lymphocytes with high concentrations of thymidine or BrdUrd as blocking agents, followed by low concentrations of BrdUrd or thymidine respectively as releasing agents, and obtained R- or G-band patterns respectively. The dynamic R- and G-band patterns were complementary for all chromosomes, even for the late-replicating X chromosome. There was no overlapping and every part of each chromosome was positively stained by one of the two banding procedures. The complementarity of the two patterns shows that both high thymidine and high BrdUrd concentrations blocked S-phase progression near the R-band to G-band replication transition in the middle of S-phase. Some bands of the inactive X chromosome replicate before this transition concurrently with R-band replication. The 48 different telomeric regions could be classified into 5 distinct morphotypes based upon the distribution of early and late-replicating DNA in each telomeric region. The dynamic band patterns are particularly useful for the study of the structural and physiological organization of chromosomes at high resolution and should prove invaluable for assessing the replication behavior of rearranged chromosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.