Abstract
Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, N2,3-ethenoguanine, 1,N6-ethenodeoxyadenosine, and 3,N4-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of Hprt mutations were analyzed using published methods. Treatment of DNA from human TK6 lymphoblastoid cells with [2,3-14C]-CEO produced dose-dependent binding of 14C-CEO equivalents, and treatment of DNA from control rat brain/liver with CEO induced dose-related formation of N7-(2'-oxoethyl)guanine. No etheno-DNA adducts were detected in target tissues (brain and forestomach) or nontarget tissues (liver and spleen) in rats exposed to 0, 3, 10, 33, 100, or 300 ppm ACN for up to 105 days or to 0 or 500 ppm ACN for ∼15 months; whereas N7-(2'-oxoethyl)guanine was consistently measured at nonsignificant concentrations near the assay detection limit only in liver of animals exposed to 300 or 500 ppm ACN for ≥2 weeks. Significant dose-related increases in Hprt mutant frequencies occurred in T-lymphocytes from spleens of rats exposed to 33-500 ppm ACN for 4 weeks. Comparisons of "mutagenic potency estimates" for control rats versus rats exposed to 500 ppm ACN for 4 weeks to analogous data from rats/mice treated at a similar age with N-ethyl-N-nitrosourea or 1,3-butadiene suggest that ACN has relatively limited mutagenic effects in rats. Considerable overlap between the sites and types of mutations in ACN-exposed rats and butadiene-exposed rats/mice, but not controls, provides evidence that the carcinogenicity of these epoxide-forming chemicals involves corresponding mutagenic mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.