Abstract

Distributed transmit diversity (DTD) technique that combines cooperative communications and diversity techniques is a suitable solution in 5th-generation (5G) systems. In this paper, we investigate the effect of receiver phase compensation (RPC) on the performance of DTD. We introduce new expressions for the average error rate of DTD in the presence of RPC. The derived expressions are useful for a large number of modulation schemes. We obtain further insights by comparing the RPC effect on DTD with different spatially correlated collocated transmit diversity (CTD). The new observations include the following: (1) In the case of feedback delay, the phase compensation (PC) is required on the receiver side in addition to the transmitter side. (2) In DTD with RPC, the system performance is improved by increasing the differences between the channel gain variances. However, this is the opposite of the case of DTD without RPC. (3) The correlated CTD is more sensitive to RPC than DTD. This sensitivity increases by enhancing the correlation between transmit (TX) antennas. (4) In the case where there is no delay for CTD or DTD, RPC does not affect the system’s performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.