Abstract

This work proposes a method to analyze distributed generation (DG) accommodation in a flexible distribution network (FDN). Firstly, the DG-load matching degree is proposed to quantitatively describe the power balance degree of DG and load in a distribution network. Secondly, the accommodation ratio of DG is proposed and divided into a DG-load accommodation ratio and DG-network-load accommodation ratio, to distinguish whether the index takes the network operational constraints into account. We derive the DG-load accommodation ratio directly from the matching degree and propose the simulation model of sequential production to solve the DG-network-load accommodation ratio. Finally, the cases of FDN under the scenarios of different matching degrees are studied and compared with those of the traditional rigid distribution network. The results show that the improvement of the accommodation ratio by upgrading the rigid distribution network to an FDN is conditional, which is related to not only the matching degree of the whole network but also that of each local network. The DG-network-load accommodation ratio will tend to the DG-load accommodation ratio if proper planning or optimization measures are taken. We find that the capacity of branches adjacent to the DG bus mainly limit the DG accommodation in the FDN, and it is recommended to relocate the DGs and enlarge the capacity of those branches.

Highlights

  • The installed capacity of distributed generations (DGs) is rapidly increasing in distribution networks in recent years

  • The results show that the improvement of the accommodation ratio by upgrading the rigid distribution network to an flexible distribution network (FDN) is conditional, which is related to the matching degree of the whole network and that of each local network

  • This paper proposes the concept of DG-load matching degree, to quantitatively describe the relative value of the power energy output from DG and load consumption in a distribution network

Read more

Summary

INTRODUCTION

The installed capacity of distributed generations (DGs) is rapidly increasing in distribution networks in recent years. The cases with overall higher capacity of DGs are studied to verify the conclusion mentioned above, as is shown in Supplementary Material 4

CONCLUSIONS
Findings
DATA AVAILABILITY STATEMENT

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.