Abstract
Rapid progress in the Human Genome Project has stimulated investigations for gene therapy and DNA diagnosis of human diseases through mutation or polymorphism analysis of disease-causing genes and has resulted in a new class of drugs, i.e., DNA-based drugs, including human gene, disease-causing gene, antisense DNA, DNA vaccine, triplex-forming oligonucleotide, protein-binding oligonucleotides, and ribozyme. The recent development of capillary electrophoresis technologies has facilitated the application of capillary electrophoresis to the analysis of DNA-based drugs and the detection of mutations and polymorphism on human genes towards DNA diagnosis and gene therapy for human diseases. In this article the present state of studies on the analysis of DNA-based drugs and disease-causing genes by capillary electrophoresis is reviewed. The paper gives an overview of recent progress in the Human Genome Project and the fundamental aspects of polymerase chain reaction-based technologies for the detection of mutations and polymorphism on human genes and capillary electrophoresis techniques. Attention is mainly pad to the application of capillary electrophoresis to polymerase chain reaction analysis, restriction fragment length polymorphism, single strand conformational polymorphism, variable number of tandem repeat, microsatellite analysis, hybridization technique, and monitoring of DNA-based drugs. Possible future trends are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of chromatography. B, Biomedical applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.