Abstract

This study aims to quantify the impact of discretionary lane-changing (DLC) on following vehicles (FVs) in the target lane using real-world dataset. The Waymo Open Dataset is used to identify the differences between autonomous vehicles (AVs) DLC and human-driven vehicles (HDVs) DLC maneuvers and compare their impacts on the driving volatility. Then, a block maxima (BM) model is applied to estimate crash risks. Finally, multivariate adaptive regression splines (MARS) is adopted to model gap acceptance behaviors of AV and HDV. Compared to HDV DLC, AV DLC leads to lower speed and yaw rate volatility and smaller acceleration rates of FVs. Further, the BM model reveals that the crash risk in AV DLC events is half of that in HDV DLC events. Additionally, MARS show that AV and HDV accept different lead gap. These findings highlight the benefits of mixing AVs in traffic and guide the improvement of AV controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.